Menslike liggaamsarea: berekeningsformule en berekeningsvoorbeelde

INHOUDSOPGAWE:

Menslike liggaamsarea: berekeningsformule en berekeningsvoorbeelde
Menslike liggaamsarea: berekeningsformule en berekeningsvoorbeelde
Anonim

Die oppervlaktes van driedimensionele figure, bekend uit die skoolkursus van stereometrie, soos 'n kubus, parallelepiped, piramide, prisma, silinder en ander, is nie moeilik om te bereken nie. Hulle kante en basisse is die eenvoudigste. Hulle kan vierkante, reghoeke, driehoeke, sirkels, ensovoorts wees. As die figuur meer ingewikkeld is, word dit in kleintjies verdeel en die oppervlaktes van hul oppervlakvlakke word opgetel. Sodoende bereik hulle die gewenste resultaat. Maar as 'n sekere voorwerp van volumetriese ruimte toegerus is met die mees ingewikkelde vorm, byvoorbeeld die menslike liggaam. Die oppervlakteformule in hierdie geval is nie so eenvoudig nie. Boonop is elkeen van die mense van nature toegerus met hul eie eienskappe.

Oppervlakte van die menslike liggaam: formule
Oppervlakte van die menslike liggaam: formule

Praktiese toepassing

Maar hoekom doen sulke berekeninge enigsins? Benewens wetenskaplike belangstelling, is die praktiese belangrikheid hiervan onbetwisbaar. En 'n treffende voorbeeld hiervan is medisyne en fisiologie. Van die veloppervlak hang af van lugwisseling met die omliggende ruimte. Van die area van die liggaam - metabolisme, dit wil sê die interne metaboliese prosesse van die liggaam. Dit sluit in die verwerking van voedselelemente, die omskakeling daarvan in die kleinste deeltjies en die verwydering van onnodige stowwe. Die meganika van die belangrikste menslike organe, wat gesondheid en lewe beteken, is afhanklik van behoorlike metabolisme.

Liggaamsgewig word grootliks gebou uit vetweefsel, wat in die liggaam waargeneem kan word as 'n oormaat of tekort. Daarom is die gewig van 'n persoon nie altyd in staat om 'n aanduiding van die metaboliese proses te wees nie as gevolg van individuele eienskappe. Met dit in gedagte, word in medisyne geglo dat die oppervlakte van die menslike liggaam 'n belangrike faktor is. Daarom word die formule daarvan as nodig geag.

Chemoterapie

Chemoterapie speel dikwels 'n belangrike rol om van aansteeklike en parasitiese siektes ontslae te raak. Gewoonlik het dit 'n groter effek as die behandeling van middels wat vandag aan die wetenskap bekend is, terwyl dit soms minder negatiewe gevolge vir die liggaam gee. Die doel daarvan is die vernietiging van aansteeklike middels of parasiete, en nie 'n eenvoudige regstelling van oortredings nie, soos in die geval van die gebruik van farmakologiese metodes. Die resultaat is die herstel van orgaanfunksies. Dieselfde metode word gebruik om die pasiënt van kankerselle ontslae te raak, wat in baie gevalle 'n tasbare resultaat het.

Menslike Liggaamsarea: Formule vir Chemoterapie
Menslike Liggaamsarea: Formule vir Chemoterapie

Die presiese formule vir menslike liggaamsarea vir chemoterapie is baie belangrik. Op grond van hierdie aanwyser word die dosis berekennodige dwelms. Sonder om dit te weet, is dit moeilik om 'n positiewe uitkoms te verwag.

Ander gebruike

Om die area van liggaamsbedekking te ken, bied bykomende geleenthede vir fisiologiese navorsing. Die eienskappe daarvan vir verskillende ouderdomme kan bereken en gesistematiseer word. Hier word die kans aansienlik vergroot om nie net 'n neiging tot vetsug en ander siektes betyds op te spoor nie, maar ook om waardevolle wetenskaplike navorsing te doen gebaseer op die data wat verkry is.

Sulke berekeninge is nodig om die dosis van dwelms met groot akkuraatheid te bereken, middels wat 'n uiters saamgeperste terapeutiese indeks het, dit wil sê 'n klein grens tussen die dosis wat 'n positiewe effek veroorsaak en die liggaam benadeel. Dit is uiters belangrik, nie net in chemoterapie nie, maar ook in die aanstelling van hormonale middels. Ultraklankondersoeke van kardiale funksies vereis ook kennis van die formule vir die area van die menslike liggaam. Daarbenewens word dit gebruik om die intensiteit van glomerulêre filtrasie in nefrologie te bestudeer. Dit is 'n belangrike aanduiding van die studie van nieraktiwiteit.

Hoe om te meet?

Daar is spesiale formules vir die berekening van die oppervlakte van driedimensionele meetkundige vorms. Die meeste van hulle is in die oudheid geteel, en moderne mense herken hulle uit naslaanboeke en skoolhandboeke.

Dit is ook maklik om die volume van die menslike liggaam te bereken, selfs ten spyte van sy komplekse parameters. Die groot Archimedes het 'n soortgelyke taak hanteer. Hy het gevind dat dit genoeg is om 'n voorwerp in 'n tenk wat tot bo gevul is met water te dompel, en die vloeistof wat daardeur verplaas word in 'n houer te versamel, dan die volume water,wat maklik is om te meet, en gelyk sal wees aan die volume van die liggaam. Volgens 'n legende wat van ouds af na ons toe gekom het, het so 'n eenvoudige, soos alle vindingryke, idee by die groot antieke Griekse wetenskaplike gekom terwyl hy besig was om te bad.

Hoe om die oppervlakte van die menslike liggaam te bereken: formule
Hoe om die oppervlakte van die menslike liggaam te bereken: formule

Wat sou Archimedes sê?

Maar wat van die formule vir die berekening van die oppervlakte van 'n menslike liggaam? Hier sou selfs Archimedes dit moeilik vind om te antwoord, hierdie, met die eerste oogopslag, elementêre taak blyk so moeilik te wees. Laat ons dadelik duidelik maak dat ons per area glad nie die buitelyne van 'n persoon se liggaam verstaan nie, wat verkry kan word deur dit teen 'n muur te leun en om die silhoeët te kry. Dit verwys na die oppervlak van die vel. Maar hoe om dit te meet? Die vel kan immers nie verwyder word, soos klere, en op die vloer uitgelê word nie, maak die nodige mates.

Natuurlik kan jy iemand van kop tot tone met 'n pleister bedek, dit dan verwyder en die oppervlakte meet. Daar is ook 'n kans om die hele liggaam van 'n persoon met servette te probeer bedek, maar netjies, eweredig en sonder oorvleuelings. En verwyder dan al die elemente, herbereken en vermenigvuldig met die oppervlakte van een servet. Dit is egter te omslagtig en komplekse proses, in werklikheid is dit byna onmoontlik om te implementeer. Boonop is die waarskynlikheid van foute so hoog! Maar tog het mense uiteindelik 'n oplossing vir hierdie probleem gevind.

Berekeningbeginsels

Die eerste formule vir sulke berekeninge is deur die Amerikaner Dubois ontwikkel. Alle berekeningsmetodes wat later voorgestel word, suiwer fundamenteel, verskil nie veel van die aangeduide metode nie. Hulle gebruikaanwysers van liggaamsgewig en lengte van 'n persoon, dit wil sê sy lengte, tot 'n sekere mate verhoog. Dan word hul produk vermenigvuldig met 'n koëffisiënt minder as 1 wat vooraf op 'n praktiese manier bereken is. Dit is die mees gerieflike opsie, aangesien sonder so 'n formule, die meet van die oppervlakte van 'n menslike liggaam 'n uiters ingewikkelde proses is in terme van ruimtelike meetkunde.

Die meeste van die metodes vereis data oor die gewig en lengte van 'n persoon om te bereken. In die Livingston en Scott-berekening word egter net die massa gebruik. Dit is ook kenmerkend van die Costeff- en Mattard-formules.

Voorbeeld

Menslike liggaamsarea: berekeningsformule
Menslike liggaamsarea: berekeningsformule

Yu se metode kan aangehaal word as 'n voorbeeld van die berekening van die oppervlakte van 'n menslike liggaam. Hierdie formule is die eenvoudigste, en daarom het dit in ons tyd wydverspreid geword. Dit is soortgelyk aan die Mosteller-metode. Hier word die numeriese waardes van hoogte en gewig verhoog tot die mag van 0,5 (dit wil sê die vierkantswortel word onttrek). En dan word die resultaat vermenigvuldig met 0,015 925. In hierdie geval moet die massa na kilogram omgeskakel word. Die lengte word in sentimeter geneem. Vir dit alles word die waarde van die area in vierkante meter verkry, en hierdie omstandighede moet ook in ag geneem word.

Nou is dit maklik om die oppervlakte met 'n hoogte van 169 cm en 'n gewig van 64 kg te bereken. Nadat die vierkantswortels van die voorgestelde waardes bereken is, sal dit 0,015925 x 13 x 8 wees. Die finale resultaat sal wees na afronding 1,66 m2.

Nadat jy uitgevind het hoe om die oppervlakte van die menslike liggaam en die formule te bereken, kan jy nou soortgelyke berekeninge vir verskeieverouder onder sekere parameters en, indien verlang, tabelle en diagramme daaruit saam te stel. Hulle help om die algehele patroon van veranderinge in liggaamsoppervlakte gedurende 'n persoon se lewe van babatyd tot volwassenheid te openbaar.

Hieronder is die data vir seuns van 8 tot 12 jaar, bereken volgens Dubois.

Die formule vir die berekening van die oppervlakte van die menslike liggaam
Die formule vir die berekening van die oppervlakte van die menslike liggaam

Dubois-nomogram

Maar is dit moontlik om al die data uit te vind sonder ongerieflike berekeninge? Dit is duidelik dat sonder komplikasies en formules die area van 'n persoon se liggaam gevind kan word met behulp van 'n nomogram. Dit is ook deur Dubois voorgestel en saamgestel. Dit word hieronder aangebied. Hoe om dit te gebruik?

Die formule vir die berekening van die oppervlakte van die menslike liggaam
Die formule vir die berekening van die oppervlakte van die menslike liggaam

Die syfers op die horisontale dui die gewig van die liggaam aan, op die vertikale - die lengte van die persoon. Om die oppervlakte volgens hierdie nomogram uit te vind, is dit nodig om verstandelik loodregte lyne horisontaal en vertikaal van die verlangde aanwysers te teken totdat hulle mekaar sny. Die resulterende punt op die voorgestelde kurwes sal die gewenste resultaat toon, volgens Dubois se berekeninge. Deur byvoorbeeld 'n nomogram te gebruik, is dit maklik om uit te vind dat met 'n hoogte van 160 cm en 'n gewig van 75 kg, die liggaamsoppervlakte 1,8 m sal wees2.

Medisyne en wiskunde

Nadat ons die kwessie oorweeg het, het ons besef dat kennis oor die area van die menslike liggaam en die formule waarmee dit moontlik is om dit te bepaal, wat so nodig is vir 'n gesonde lewe, deur wiskunde verskaf word.

Hoe om liggaamsoppervlakte te bereken deur die formule te gebruik
Hoe om liggaamsoppervlakte te bereken deur die formule te gebruik

En dit is ver van die enigste inligting waaruit dokters kan krywetenskapkoninginne. Die taal van getalle in hierdie wêreld kan immers feitlik alles uitdruk. Die geometrie van die menslike liggaam is 'n groot wêreld vol wonderlike ontdekkings. En baie organe: gewrigte, bene en spiere, dit is nie toevallig dat hulle hul naam gekry het van die naam van geometriese vorms nie. Wiskunde is ook belangrik in genetika, oogheelkunde, mediese statistiek en baie ander areas van medisyne.

Aanwysers van lengte en gewig is nodig vir die korrekte berekening van die dieet. Akkurate metings van menslike organe, beide inwendig en uitwendig, is immers noodsaaklik vir die vervaardiging van moderne elektroniese prosteses, en nie net beskadigde ledemate nie. Deesdae word selfs kunsmatige hartkleppe vervaardig en suksesvol in die praktyk gebruik. En dit is net nog een van die moontlike blink voorbeelde.

Aanbeveel: